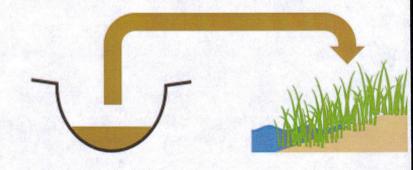
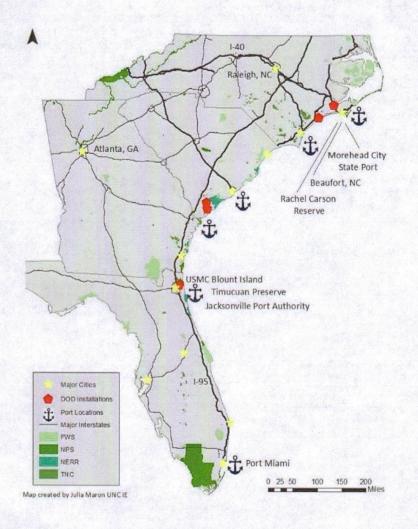
Keep it in the System (KITS): A decision tool for managers considering beneficial use of dredged sediment to increase resilience of coastal marshes and built infrastructure NOAA Effects of Sea Level Rise Program

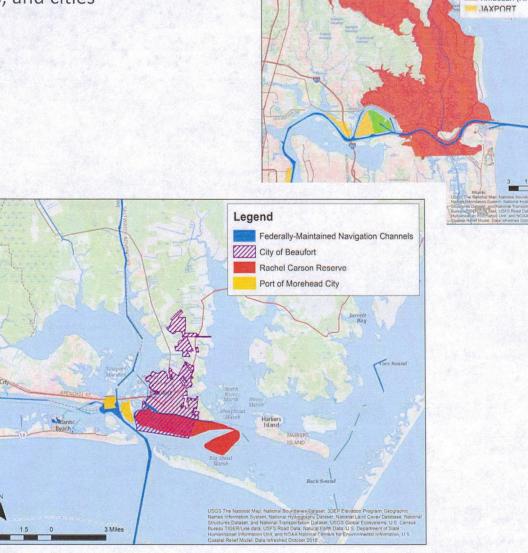
Susan Cohen, UNC Chapel Hill, Institute for the Environment Kathryn Cerny-Chipman, EA Engineering, Science, and Technology, Inc., PBC Carolyn Currin, NOAA, National Ocean Service, National Centers for Coastal Ocean Science Jenny Davis, NOAA, National Ocean Service, National Centers for Coastal Ocean Science Brian Harris, USACE Research and Development Center, Coastal and Hydraulics Laboratory Brian McFall, USACE Research and Development Center, Coastal and Hydraulics Laboratory Peggy Mullin, UNC Chapel Hill, Institute for the Environment Sam Whitin, EA Engineering, Science, and Technology, Inc., PBC



KITS Project Objectives

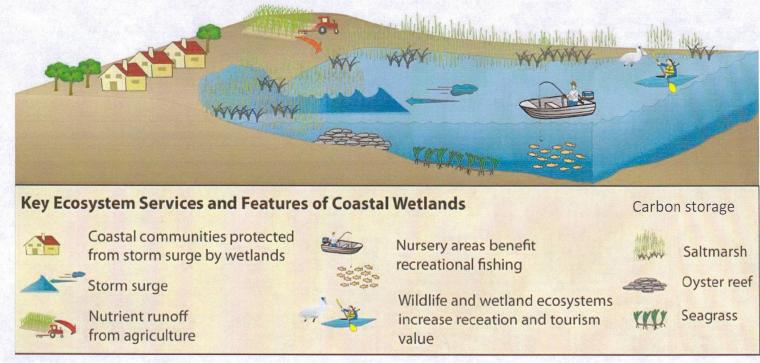
Develop and demonstrate a comprehensive approach for the beneficial reuse of dredged sediments with NNBFs, keeping the sediment in the system.


- identify areas where dredging needs align with coastal marsh vulnerability.
- develop, test, and refine guidence to synchronize maintenance dredging activities with marsl habitat restoration and creation opportunities.
- evaluate NNBF approaches to protect coastal infrastructure from shoreline erosion and SLR.


In other words... many coastal marshes may not have enough sediment to keep up with sea level rise, while sediment accumulates that can impede navigation. **Beneficial use of dredged material** for marsh restoration keeps sediment in the system by removing it from channels and adding it to marshes – can help to solve both problems.

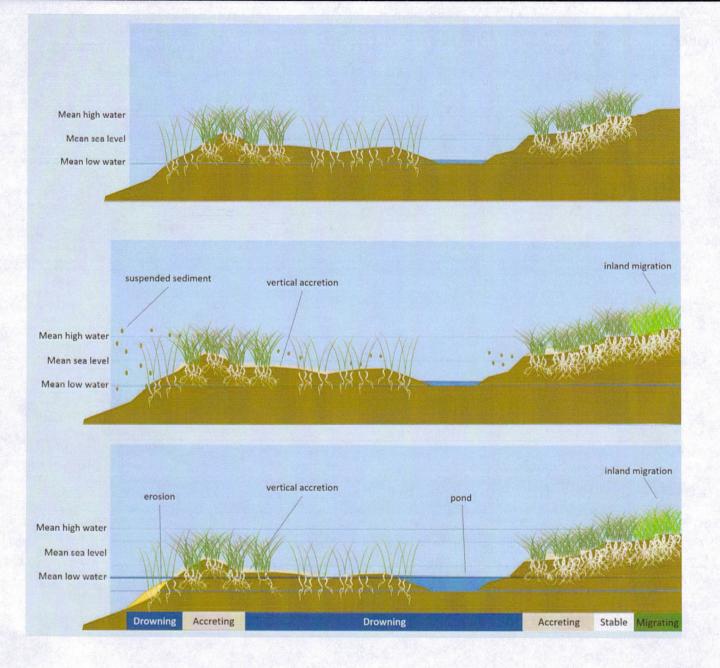
NNBF - Natural and nature-based features

Study sites in Florida and North Carolina - ports, DoD Installations, conservation areas, and cities


Legend

Blount Island

Timucuan (NPS)


Federally-Maintained Navigation

Coastal marshes (and ecosystem services) are challenged to persist due to the effects of climate change and sea level rise, in combination with an inadequate sediment supply.

University of Maryland Center for Environmental Science

The need to keep navigation channels, ports, and national facilities open is complementary to ensuring the resilience of coastal marsh systems, providing both critical infrastructure protection and non-protective ecosystem and societal services.

How do marshes respond to SL

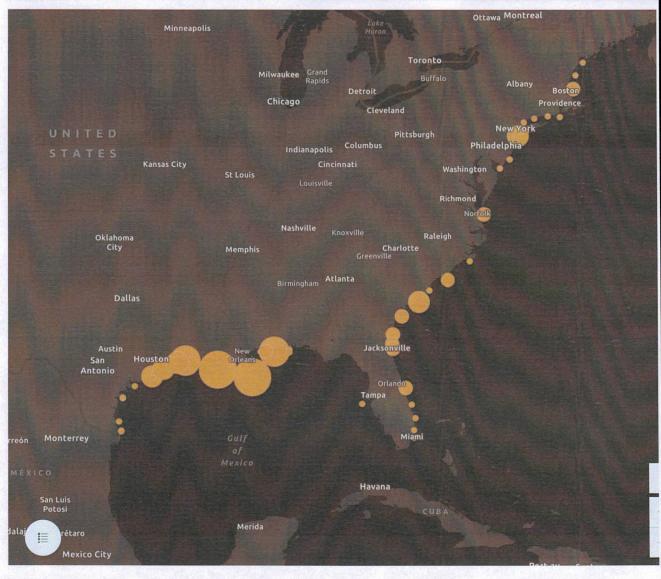
Coastal marshes grow where they a regularly inundated by tides, betwe mean low water and mean high wat

There are a few ways that coastal marshes respond to sea level rise. They can accrete or build up vertica or migrate inland

When marshes can't keep up with s level rise through accretion or migr they are likely to drown. This can le to erosion along the front edge of marshes and the creation of ponds marsh interiors.

- 41 States (including all east of the Mississippi River) are served by Corps ports and waterways
- Nearly 12,000 miles of inland and intracoastal shallow-draft waterways (9- to 14-foot draft) and 13,000 miles greater than 14-foot-deep channels, for a total of 25,000 miles are operated and maintained for commerce
- The Intracoastal Waterway alone is 1,089-miles from Norfolk, Virginia, to Miami
- 400 ports in the United States are maintained for commerce

We dredge a lot!



Percentage of Average Annual Yardage of Dredged Material FY 2008-2012, Including both USACE and Contractor Dredging, Broken Down by Class of Work

There are two options for dredged sediment: **disposal** removes the sediment from the system, and **beneficial use** places the sediment where it is needed, such as on beaches or marshes.

In total, >2 billion cubic yards of sediment has been placed in offshore sites, enough to fill the largest enclosed NFL stadium(AT&T Stadium in Arlington, TX) more than 519 times!

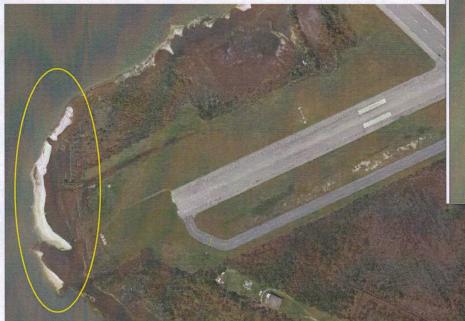
Location of dredge material placed in ocean disposal site between 1976 and 2019.

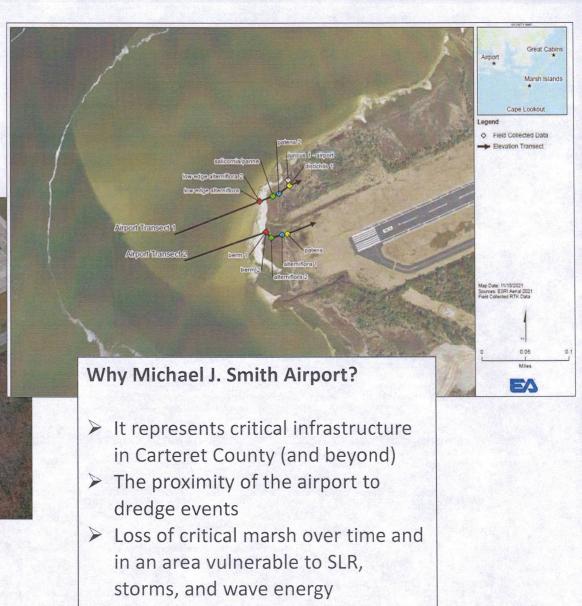
One emerging technique for building coastal marsh resilience is the **beneficial use of sediment** removed from channels by dredging to restore existing marsh or create new marshes.

Thin-layer placement is one of those techniques and involves adding a thin layer of sediment to existing marshes to build up their elevation. Sediment can also be used to fill ponds in fragmented marsh or create new marsh islands in shallow areas.

Brief History of Thin layer application of Dredged Material for Coastal Wetland Restoration

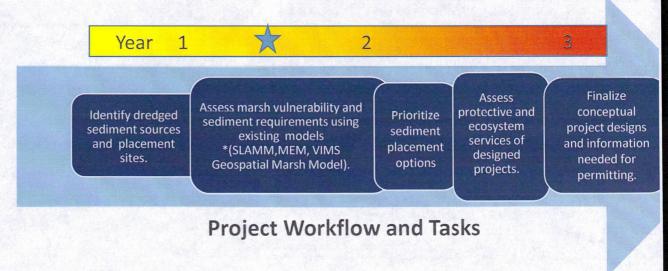
- Experimental work in GA and LA in the 70's
- Large-scale projects in LA and NC in the 80's and 90's
- Generally successful, some missteps, but recovery seen with 10-20 cm thickness over established marsh
- Many projects implemented or planned in last 3 years nationwide


Why Greater Emphasis Now?


- Deeper ports, more dredging, increasing disposal costs
- Sand as a limited resource
- SLR and storm impacts to coastal communities
- Natural and nature-based infrastructure role in coastal res
- Science supports Elevation Capital for wetland sustainabil
- RUNNING OUT OF CHEAP PLACES TO PUT THE SEDIMENT

Challenges

- Permitting and regulatory protection, Clean Water Act, Rivers and Harbors
- Engineering the application
- Regional planning
- Thin Layer Placement and Dredge Projects can't be married at the last minute
- Building SLR into the equation becomes problematic especially in micro-tidal areas
- Typically, there is much more dredge material to be disposed of than is needed for restoration.


Visual comparison of imagery from 2020 and 2012 suggests that this section of shoreline has receded measurably.

The Ask

- Permission to use the Michael J.
 Smith Airport as a field site
- To work with partners interested in resilience, and the protective services of marshes for infrastructure and ecosystem benefits

The Deliverables (August 2023)

- An assessment of the current vulnerability of the airport infrastructure and model predictions of future marsh resilience
- > A shovel ready project design to enhance marsh resilience to SLR
- Maybe a permit.....
- > At project end, we can team up to find funding to implement the project design
- Guidance for other managers, developed from the project field sites

The goal is to link partners in a region and match sediment supply with coastal resilience needs, meeting the management goals of multiple organizations.

Resources

https://storymaps.arcgis.com/stories/746072c8 8ec7488a8ab0f9b39f0dd435

https://coastalscience.noaa.gov/project/keeping -it-in-the-system-beneficial-use-of-dredgedsediment-to-increase-resiliency-of-coastalmarshes-in-the-southeast/

Susan Cohen susanac@email.unc.edu

